

Above ω_R no external negative resistance is exhibited by a tunnel diode by definition—in this case all $j\omega$ plots terminate somewhere in the RH H plane. It is therefore justified to draw an arbitrary loop from just above ω_R to just below $-\omega_R$ in the RH H plane (along a constant resistance or conductance line just to the right of the imaginary-axis, say) regardless of which limiting case of Table I applies.

Analogous limiting cases will now be found for the ρ' plane, for $R' = Z_C(p)|_{p \rightarrow \infty}$.

$$\text{If } Z_L(p)|_{p \rightarrow \infty} \rightarrow \frac{1}{pC},$$

$$\rho'(p)|_{p \rightarrow \infty} \rightarrow -1. \quad (10)$$

If $Z_L(p)|_{p \rightarrow \infty} \rightarrow R$,

$$\rho'(p)|_{p \rightarrow \infty} \rightarrow \frac{R + R'}{R - R'}. \quad (11)$$

If $Z_L(p)|_{p \rightarrow \infty} \rightarrow pL$,

$$\rho'(p)|_{p \rightarrow \infty} \rightarrow +1. \quad (12)$$

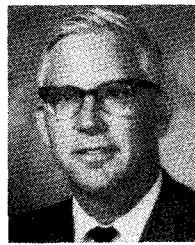
The infinite CCW semicircle in the LH p plane of Fig. 2(a) will, therefore, coalesce into a single point on the real ρ or ρ' axis, according to Table II.

The question of where an arbitrary loop can be drawn without ambiguity presents some difficulty. It is important to distinguish between whether the Smith chart is being used with the stability criterion in terms of admittance or in terms of voltage reflection coefficient. Figure 3 illustrates the difficulty with the aid of Tables I and II, with Z_L representing the tunnel-diode equivalent circuit either in the form of Fig. 3(a) or (b), and with $Z_C(p)$ equal to a constant. Note that the H -plane criterion is associated with a closing loop through the region of the origin. The closing loops for the ρ' -plane criterion, however, pass through $\rho = \pm 1$ according to whether L or C , respectively, predominates as $p \rightarrow \infty$.

To summarize:

- 1) The numerator of $\rho(p)$ may have zeros in the RH p plane other than "active" ones which would have to be determined.
- 2) The arbitrary closing loop in the ρ' plane cannot be so easily dismissed (see Fig. 4) as in the H -plane.
- 3) No further information on *stability* is forthcoming by considering ρ' rather than H .

It is advisable, therefore, that when using the Smith chart for predicting simultaneously the stability and gain of reflection amplifiers, for example, the stability criterion itself should be formulated in terms of H to avoid ambiguity. The Smith chart plot is visualized as a distorted H -plane plot for this purpose.


J. W. BANDLER¹
Dept. of Elec. Engrg.
University of Manitoba
Winnipeg, Canada

REFERENCES

- [1] J. W. Bandler, "Stability and gain prediction of microwave tunnel-diode reflection amplifiers," *IEEE Trans. Microwave Theory and Techniques*, vol. MTT-13, pp. 814-819, November 1965.
- [2] W. F. Chow, *Principles of Tunnel Diode Circuits*. New York: Wiley, 1964, p. 116.
- [3] P. H. Smith, "A new negative-resistance Smith chart," *Microwave J.*, vol. 8, pp. 83-92, June 1965.
- [4] J. W. Bandler, "Frequency responses in the reflection coefficient plane plotted by digital computer," *IEEE Trans. Microwave Theory and Techniques (Correspondence)*, vol. MTT-14, pp. 399-400, August 1966.
- [5] H. W. Bode, *Network Analysis and Feedback Amplifier Design*. Princeton, N. J.: Van Nostrand, 1945.
- [6] B. T. Henoch and Y. Kvaerna, "Stability criteria for tunnel-diode amplifiers," *IRE Trans. Microwave Theory and Techniques (Correspondence)*, vol. MTT-10, pp. 397-398, September 1962.

¹ Formerly with Mullard Research Labs., Redhill, Surrey, England.

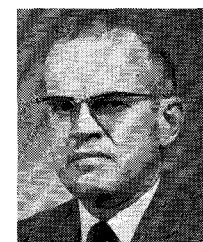
Contributors

Merle E. Donaldson (S'46-A'49-SM'55) was born in Silverdale, Kan., on April 4, 1920. He received the B.E.E., M.S.E.E., and Ph.D. degrees from the Georgia Institute of Technology, Atlanta, in 1946, 1947, and 1959, respectively.

From 1946 to 1950 he was an Instructor, then Assistant Professor in the Electrical Engineering Department at the Georgia Institute of Technology, Atlanta. He joined the Electro-Nuclear Division of the Oak Ridge National Laboratory in 1950. As a Senior Engineer and later a Project Leader, he was responsible for the concept, design, and construction of several radio frequency systems for fixed frequency cyclotrons. He was also concerned with large magnet development and cyclotron instrumentation. From 1957 to 1963, he held several positions from Research Engineer to Director of the Advanced Development Laboratory in the Engineering Division of Electronic Communications Inc., St. Petersburg, Fla. His responsibilities included research and development related to communication equipment involving multichannel receivers and transmitters. In addition, he was concerned with system studies involving antennas and propagation. From 1962 to 1964, he was the academic supervisor of an off-campus graduate program

for the University of Florida. He joined the College of Engineering, University of South Florida, Tampa, Fla., in 1964, as Professor and Chairman of the Electrical and Electronics Department. He is a Consultant to Sperry Microwave Electronics Co., Clearwater, Fla.

Dr. Donaldson is a registered Professional Engineer in Florida. He is a member of the American Society for Engineering Education and the American Association for the Advancement of Science.



Doyle A. Ellerbruch (S'57-M'59) was born in Bloomfield, Neb., on July 29, 1933. He received the B.S.E.E. degree from the University of Wyoming, Laramie, in 1958. He has taken graduate work at the University of Colorado, Boulder.

From 1958 to 1959, he was with the Boeing Co., Seattle, Washington. He was with Land-Air, Inc., Cheyenne, Wyo., from 1959 to 1960. Since then, he has been with the National Bureau of Standards, Boulder, Colo., where he

is Project Leader for the Microwave Phase Shift and Attenuation Standards Projects.

Mr. Ellerbruch is a member of Sigma Tau.

Glenn F. Engen was born in Battle Creek, Mich., on April 26, 1925. He received the B.A. degree in physics and mathematics from Andrews University, Berrien Springs, Mich., in 1947, and has taken graduate work at the Universities of Michigan, Maryland, and Colorado.

After employment with the U. S. Naval Ordnance Lab. and the Applied Physics Lab. at The Johns Hopkins University, he joined the National Bureau of Standards in 1954. Currently he is Assistant Chief of the Microwave Circuit Standards Section, Radio Standards Lab., at NBS. He has authored fifteen published papers in the field of microwave measurements and holds two patents.

Mr. Engen was awarded the Department of Commerce Silver Medal for Meritorious Service. He is a member of Commission I of the International Scientific Radio Union (URSI).

John B. Horton (S'55-M'57) was born in Roxboro, N. C., on February 23, 1929. He received the B.E.E. degree in communications from the George Washington University, Washington, D. C., in 1956, and the M.S.E.E. degree from

the University of Pennsylvania, Philadelphia, in 1964.

From 1956 to 1963, he was employed at Radio Corporation of America as a Design and Development Engineer. He worked on microwave components, IF and video devices, and radar subsystems. He was Project Engineer on a five-frequency telemetry receiver and on an L-band parametric amplifier field change kit for operational radars. In May, 1963, he joined Sperry Microwave Electronics Co., as a Design Engineer in the Advanced Microwave Techniques Section. He subsequently worked on tunnel-diode amplifiers, parametric amplifiers, and frequency multipliers. From February, 1965, to March, 1966, he was assigned to the Research Section as Project Engineer on a ferroelectric material study program. His work involved ferroelectric material research and the application of ferroelectric materials to microwave components. In April, 1966, he joined Texas Instruments Incorporated as a Member of the Technical Staff of the Semiconductor Research and Development Laboratories. He is presently involved in microwave integrated circuits and is concerned with the frequency multipliers of the MERA microwave module.

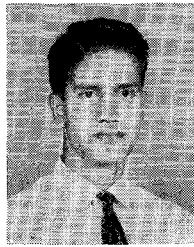
Mr. Horton is a licensed Professional Engineer in New Jersey.

William E. Little was born in Locksburg, Ark., on November 3, 1932. He received the B.S.E.E. degree, with distinction, from the University of Oklahoma, Norman, in 1957. He has taken graduate work at the University of New

Mexico, the University of Colorado, and in the NBS Graduate School.

He worked in the Microwave Standards Laboratory at Sandia Corp., Albuquerque, N. M., from 1957 to 1961 in the areas of microwave attenuation, impedance, and power measurements. From 1961 to 1966, he worked in the Microwave Circuit Standards Section of the Radio Standards Lab., National Bureau of Standards, Boulder, Colo. Since June, 1966, he has been with the Space Disturbance Lab., Institute of Telecommunication Sciences and Aeronomy, Boulder, Colo.

Mr. Little is a member of Eta Kappa Nu.


❖

Alvin Wexler (S'57-M'66) was born in Winnipeg, Canada, on July 14, 1935. He received the B.Sc. degree in electrical engineering from the University of Manitoba, Canada, in 1958. He attended Imperial College, London, En-

gland, on an Athlone Fellowship and a Metropolitan Vickers Bursary and received the Diploma of Imperial College and the Ph.D. degree from the University of London. His research concerned propagation in waveguides loaded with resistive films and ferrites.

While in the United Kingdom, he was an Assistant Editor of *Science Abstracts* and later worked for International Computers and Tabulators, Ltd., London, as a consultant. He returned to the University of Manitoba in August, 1966, as a Ford Foundation Fellow and is now an Assistant Professor there.

N. Seshagiri (M'66) was born in Satyamangalam, Madras State, India, on May 10, 1940. He received the B.E. degree in electrical engineering from the University College of Engineering, Bangalore, Mysore State, India, in 1961. He held

❖